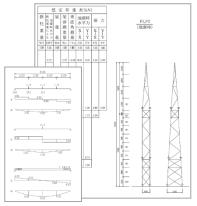
電気所屋外鉄構の耐震評価

蓄積されたノウハウをシステム化! 立体解析を標準的な設計手法に

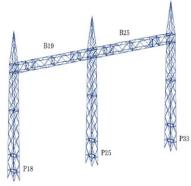
|耐震評価の必要性|

兵庫県南部震災後,変電機器類については全て耐震評価が行われ,強度が不十分な設備は耐震対策が実施されてきました。一方,屋外鉄構は,大規模改修工事が行われた一部を除き,現行基準における耐震評価を実施されていない状況にありました。


愛知金属工業では,近い将来起こり得る東南海地震などの大規模震災を想定し,安価で効率的,かつ着実に推進可能な立体解析システムを構築し,これまでに多くの実績を積み重ねています。

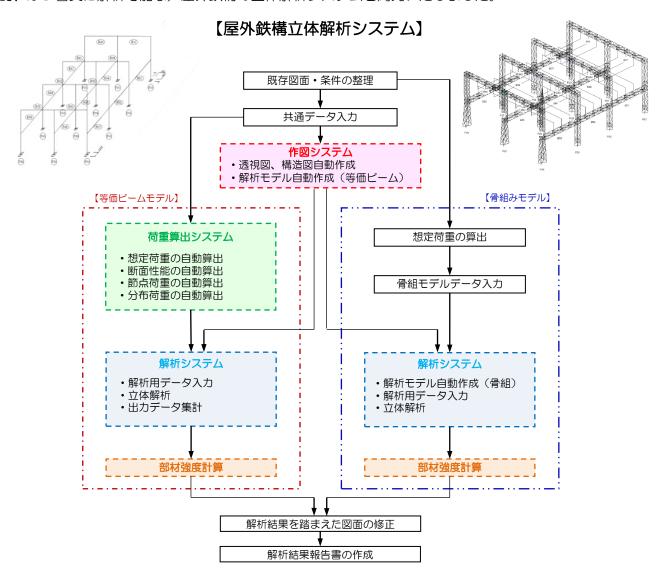
屋外鉄構の設計方法

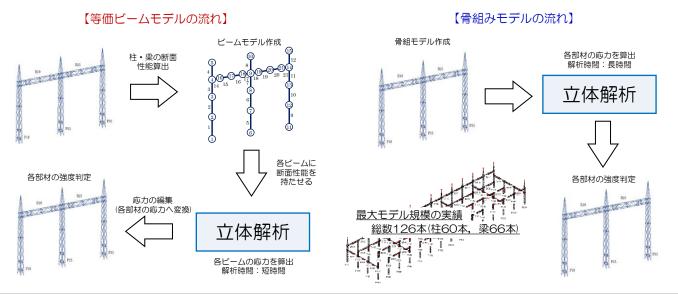
設備環境やお客様要望に応じて、「平面解析」「立体解析(等価ビーム法)」「立体解析(骨組モデル法)」から設計方法を選定して耐震評価を行います。


【平面解析】

【立体解析】 (等価ビーム法)

【立体解析】 (骨組モデル法)




6.00 6.00				
	鉄構構造	平面解析	立体解析(等価ビーム法)	立体解析(骨組モデル法)
	解析方法	平面解析	立体解析	立体解析
	地震波	O.3G共振正弦3波	O.3G共振正弦3波	実地震波、O.3G共振正弦3波
	解析手法	静解析	線形•静的解析	線形(非線形)•動的解析
	特徴	送電用鉄塔と同様のピン接合によ る平面的な解析方法	骨組構造を等価ビーム構造に置き換え ることで立体解析をスピーディに行う ことが可能。	実構造に近く、部材1本ごとの応力が直接出力されるため、精度が高い
	メリット	・検討費用が安価・短納期対応が可能	建築業界などの振動モデルとして一般的でわかりやすい解析時間が短い	・材料非線形、幾何非線形解析に対応でき、構造物の崩壊機構まで解析可能・動的解析が可能なため、実地震動に対する構造物の挙動や詳細な部材応力が把握できる
	デメリット	・応力分担を簡易式で算出しているため実態との差異が発生する・立体的な鉄構の解析ができない	 解析結果後の部材応力を変換ソフトにより編集するため、実構造との差異が発生する 非線形解析や動的解析を行う上で精度面で難点あり(部材応力算定には応力編集を繰返す必要があるため) 	・モデル作成、荷重設定、出力編集等に時間を要す・解析費用が高い

|屋外鉄構立体解析システムの概要

これまでの立体解析では、モデルの作成、載荷荷重の設定、応力の集計に時間を要するため、長い 工期と高価な費用が必要でした。そこで愛知金属工業では、大規模鉄構設備においても、安価で効率 的、かつ着実に解析可能な、屋外鉄構の立体解析システムを開発いたしました。

